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Abstract. In this article we consider how one maysystematically determine materially
conserved quantities (MCQs) from the equations describing the dynamics of a fluid and then how
these can be used to construct quite general, exact, analytical solutions of these equations. Such
solutions necessarily reflect underlying physical processes and are often general enough to satisfy
strong boundary conditions. The method described for determining MCQs is systematic and
essentially algorithmic, and is therefore a good candidate for implementation using a computer-
algebra system.

We use this method to recover three MCQs of the equations describing large-scale fluid flow
on the surface of a rotating sphere (geostrophic flow). We then prove that these geostrophic
equations admit no further MCQs. Next, we describe how to construct fairly general, exact
solutions from these quantities.

Finally we discuss the application of these ideas to general systems of fluid-dynamical
equations, in particular we consider under what conditions there exist MCQs which hold for a
significant number of solutions of a system of governing equations and when these can be found
without a priori determining these solutions.

1. Introduction

It is well known that the dynamics defined by the equations which describe large-scale
flow of a thin layer of fluid on the surface of a rotating sphere (e.g. the world’s oceans),
the geostrophic equations, admit certain materially conserved quantities (MCQs). These
quantities have been used in variousad hocways to construct solutions of the equations. A
systematic approach is needed. Moreover, this approach should be applicable to other fluid
systems. In this paper we discuss how one cansystematicallydetermine the MCQs of a
wide class of fluid-dynamical systems and how they may be used to construct surprisingly
general analytical solutions.

Given n MCQs of a system of partial differential equations (PDEs) inn independent
variables the MCQs are necessarily functionally related. These relations take the form of
differential equations which are significantly simpler than the governing equations. Solution
of these equations yields classes of solution ansatz which necessarily reflect fundamental
underlying physics and which satisfy strong boundary conditions—stronger than those which
may be satisfied by solutions obtained from point symmetries (e.g. Bluman and Kumei 1989,
Olver 1986, Stephani 1990); see section 5 for further discussion on this.

We show how one can search, in a systematic, essentially algorithmic way, for such
MCQs directly from the governing equations of a large class of fluid-dynamical systems.

† E-mail address: simonh@liv.ac.uk
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The method is a good candidate for implementation using a computer-algebra system such
as MAPLE or MACSYMA. We apply this method to the geostrophic equations. We then
discuss the number of MCQs a given system can have. We show that the geostrophic
equations have only three MCQs (to the author’s knowledge no such proof has been
previously given) and that in general a system of equations inn independent variables
hasn MCQs, though it is not obvious, in general, how to find these systematically without
first solving the governing equations; we consider under what circumstances it is possible
to do this.

The class of solutions which one finds from the MCQs of a system depends on the
function relating them; this function is arbitrary. Hence the question of which such functions
lead to physical solutions thus arises. We finally describe how one can do this by introducing
additional physical processes into the system.

2. Background

The equations most often used to describe large-scale motion of a thin layer of fluid on the
surface of a rotating sphere are, in nondimensional form,

u = −py
y

v = px

y
ρ = pz (2.1a)

ux + vy + wz = 0 (2.1b)

and

uρx + vρy + wρz = 0 (2.1c)

(three momentum equations, continuity and a thermodynamic equation, respectively), where
u, v andw are the components of the velocity field in thex, y andz directions,ρ is density,
andp is pressure. They may be written

MxMzzz + y(MxzMyzz −MyzMxzz) = 0 (2.2a)

u = −Myz

y
v = Mxz

y
w = Mx

y2
p = Mz ρ = Mzz (2.2b)

(Welander 1959). These equations are well known to admit the three MCQs

ρ = Mzz B = Mz − zMzz and q = yMzzz. (2.3)

Physically, this means that these three quantities take a constant value on the trajectory of
every fluid parcel. Each may be interpreted physically:ρ = Mzz is the density of the fluid;
B = Mz− zMzz is the Bernoulli function which is associated with the energy per unit mass
of the fluid (e.g. Batchelor 1967);q = yMzzz is the potential vorticity, a quantity related to
the usual vorticity of a fluid (e.g. Pedlosky 1987).

Welander (1971) showed that these three MCQs must be functionally related, i.e. that

yMzzz =M(Mzz,Mz − zMzz) (2.4)

for some functionM. Significantly, (2.4) is anordinary differential equation (ODE) for
M(z; x, y) (x andy play only a parametric role). Hence, if this function can be determined
then we have only to integrate an ODE and ensure consistency with the governing equation,
(2.2a). This is a huge simplification of the problem.

Motivated by these ideas, we would like some systematic method of determining MCQs
of a system of governing equations and also a method of relating these which, ideally, reflects
the physics of the situation and leads to classes of solutions which are relevant. Furthermore,
we would like these methods to have some degree of generality, i.e. be applicable to other
systems of PDEs. We address these issues in the following sections.
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Notation. The following notation is used:∂xu = ux, uy, uz andMx = Mx,My,Mz, i.e.
boldface subscripts indicate all derivatives of the corresponding order. HenceMxx =
Mxx,Mxy, . . . etc.

3. Determining MCQs

In this section we first introduce formally the concept of material conservation laws of a
differential equation. We then show how one can directly search for such laws and recover
the three quantities, (2.3). Finally we prove that no more MSQs of the geostrophic equations,
(2.2), exist.

Motivated by the conservation of physical quantities such as energy and momentum,
a dynamical quantityQ = Q(t, s(t), ṡ(t)) (where s = (s1, s2, . . .) are the trajectory
coordinates) is conserved if the differential equation

dQ

dt
=
(
∂

∂t
+ ṡ · ∂

∂s
+ s̈ · ∂

∂ ṡ

)
Q = 0 (3.1)

is satisfied. More generally, a quantity

Q = Q(t, s(t), ṡ(t), s̈(t), . . .)
is conserved if

Dt (Q) = 0 (3.2)

where

Dt = ∂

∂t
+ ṡ · ∂

∂s
+ s̈ · ∂

∂ ṡ
+ · · · . (3.3)

For an arbitrary differential equation

1(x, u, ∂xu, . . .) = 0 (3.4)

in which we do not distinguish between temporal and spatial independent variables we can
generalize further. We consider conserved quantities of the form

Q = Q(x, u, ∂xu, . . .) (3.5)

and our conservation law becomes
n∑
i=0

Di (Q
i) = 0 (3.6a)

where

Di = ∂

∂xi
+ sαi

∂

∂sα
+ sαij

∂

∂sαj
+ · · · (3.6b)

which must be satisfied for all solutionsu(x) of (3.4) (Ibragimov 1994, ch 6).

Definition. A conserved quantity,Q, of order n, is a functionQ(x, u, ∂xu, . . . , ∂nxu)
satisfying (3.6).

In continuum mechanics we often consider MCQs, that is quantities constant on each
trajectory; in this case (3.6) is more usually written(

∂

∂t
+ ṡ · ∇

)
Q(x, u, ∂xu, . . .) = 0 (3.7)
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equality holding on solutions.
One can use equations (3.1)–(3.7)directly to find MCQs of a system of equations. In

doing this one must remember that as a conservation law, (3.7), must be satisfied for all
solutions,u(x, y, z, t), of a differential equation and one must therefore take account of its
frame.

Definition. The frame of a differential equation consists of the equation itself together with
its differential consequences.

It may be the case thatQ is a function of derivatives of higher order than the highest
order terms in the given differential equation, (3.4); we must then take into account not
only the equation itself, but also its differential consequences.

3.1. Determining MCQs algorithmically

With the formal definition of a material-conservation law in mind we now describe how
one may directly determine MCQs of the system (2.2). There is a considerable amount
of algebra involved for third-order and higher laws, so to illustrate the principles involved
more clearly we first consider laws of up to second order, i.e. we look for quantities,

Q = Q(x,M,Mx,Mxx) (3.8)

for which (3.7) is satisfied.
Substituting (3.8) into (3.7), using (2.2a, b) and expanding yields

−Myz{Qx +QMMx +QMx
Mxx +QMy

Mxy +QMz
Mxz +QMxx

Mxxx

+QMxy
Mxxy +QMxz

Mxxz +QMyy
Mxyy +QMyz

Mxyz +QMzz
Mxzz}

+Mxz{Qy +QMMy +QMx
Mxy +QMy

Myy +QMz
Myz +QMxx

Mxxy

+QMxy
Mxyy +QMxz

Mxyz +QMyy
Myyy +QMyz

Myzz +QMzz
Myzz}

+Mx

y
{Qz +QMMz +QMx

Mxz +QMy
Myz +QMz

Mzz +QMxx
Mxxz

+QMxy
Mxyz +QMxz

Mxzz +QMyy
Myyz +QMyz

Myzz +QMzz
Mzzz} = 0. (3.9)

This equation must hold simultaneously with the frame of (2.2a), however, since in this case
we are concerned only with MCQs of up to second order then we do not need to consider
differential consequences of (2.2a), only the equation itself. We choose to eliminateMzzz

between (2.2a) and (3.9) yielding

−Myz{Qx +QMMx + · · · +QMyz
Mxyz} +Mxz{Qy +QMMy + · · · +QMyz

Myzz}
+Mx

y
{Qz +QMMz + · · · +QMyz

Myzz} = 0. (3.10)

(Care is needed in choosing which term to eliminate sinceQ and its derivatives potentially
depend on some of the terms in (2.2a); Q does not depend onMzzz in this case.) Note the
coefficient ofQMzz

is identically zero owing to the cancellation of certain terms. Since (3.10)
must hold for all solutionsM(x, y, z) andQ does not depend on third-order derivatives of
M, then the coefficients of products of powers of these third-order derivatives must each
be identically zero: from the coefficients ofMxxx , Mxxy , Mxxz, Mxyy , Mxyz, Myyz, Myyy ,
Mxzz andMyzz, respectively, we obtain

MyzQMxx
= 0 (3.11a)

MxzQMxx
−MyzQMxy

= 0 (3.11b)
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MxQMxx
− yMyzQMxz

= 0 (3.11c)

MxzQMxy
−MyzQMyy

= 0 (3.11d)

y(MxzQMxz
−MyzQMyz

)+MxQMxy
= 0 (3.11e)

yMxzQMyz
+MxQMyy

= 0 (3.11f)

MxzQMyy
= 0 (3.11g)

MxQMxz
= 0 (3.11h)

MxQMyz
= 0. (3.11i)

In generalMx , Mxz andMyz are nonzero, so from (3.11) we conclude that

QMxx
= QMxy

= QMxz
= QMyy

= QMyz
= 0. (3.12)

Note that we havenot shown thatQMzz
= 0 (recall the cancellation of terms mentioned

above); indeed it turns out thatQMzz
6= 0.

Using (3.12) we find that (3.10) simplifies substantially:

−Myz{Qx +QMMx +QMx
Mxx +QMy

Mxy} +Mxz{Qy +QMMx +QMx
Mxx +QMy

Myy}
+Mx

y
{Qz +QMMz +QMx

Mxz +QMy
Myz +QMz

Mzz} = 0. (3.13)

Since we have determined thatQ depends on only one second-order derivative ofM, Mzz,
then the coefficients of products of powers of all other second-order derivatives must each
be identically zero. From the coefficients ofMxxMyz, MyyMxz, MyzMxy andMxzMxy we
see that

QMx
= QMy

= 0 (3.14)

and then using this result, from the coefficients ofMxz andMyz we find

Qy +QMMy = 0 (3.15a)

Qx +QMMx = 0 (3.15b)
Mx

y
{Qz +QMMz +QMz

Mzz} = 0. (3.15c)

From (3.14) we know thatQ is independent ofMx andMy , so that from (3.15a) and (3.15b)
we find

Qx = Qy = QM = 0. (3.16)

It remains to satisfy (3.15c). Mx is not in general zero and then sinceQM = 0 then we
require the solution ofQz+QMz

Mzz = 0; there are two cases to consider: (i),Qz = QMz
= 0

and (ii),QzQMz
6= 0. In case (i) the general solution isQ = Q(Mzz) and in case (ii) it is

Q = Q(Mz − zMzz). Hence all second-order, MCQs of system (2.2) are of the form

Q = Q(Mzz,Mz − zMzz). (3.17)

It is easy to check that all quantities of this form are indeed materially conserved.
We now turn to the problem of determining all MCQs of up to third order, i.e. we

assume

Q = Q(x, y, z,M,Mx,My,Mz,Mxx,Mxy, . . . ,Mzz,Mxxx,Mxxy, . . . ,Mzzz). (3.18)

Substituting this into (3.7) we obtain

−Myz{Qx +QMMx · · · +QMzzz
Mxzzz} +Mxz{Qy +QMMy · · · +QMzzz

Myzzz}
+Mx

y
{Qz +QMMz · · · +QMzzz

Mzzzz} = 0 (3.19)
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and this must hold simultaneously with the frame of (2.2a) (cf (3.9), above). This time,
since (3.19) contains derivatives ofM of up to fourth order we must consider not only
(2.2a) itself, but in addition its derivative with respect to each independent variable,x, y
andz:

MxxMzzz +MxMxzzz + y(MxxzMyzz + · · · −MyzMxxzz) = 0 (3.20a)

MxyMzzz +MxMyzzz +MxzMyzz −MyzMxzz + y(MxyzMyzz + · · · −MyzMxyzz) = 0

(3.20b)

MxzMzzz +MxMzzzz + y(MxzzMyzz + · · · −MyzMxzzz) = 0 (3.20c)

respectively. The procedure is to use (2.2a), (3.20a–c) to eliminate four terms from (3.19)
and then continue in a similar way to the second-order case above. Again we must proceed
carefully as the derivatives ofQ in (3.19) potentially depend upon all derivatives ofM up
to third order and we cannot eliminate implicit terms! We first choose to eliminateMxxzz,
Myyzz andMzzzz from (3.19) by using (3.20a–c), respectively; we may do this without
difficulty, Q being independent of fourth-order derivatives ofM. We obtain

QMxzz
{MxxMzzz +MxMxzzz + y(MxxzMyzz +MxzMxyzz −MxyzMxzz)}

+QMyzz
{MyzMxzz · · · + y(MyyzMxzz + · · ·)}

−Myz{Qx +QMMx +QMx
Mxx + · · · +QMzzz

Mxzzz}
+Mxz{Qy +QMMy +QMx

Mxy + · · · +QMzzz
Myzzz}

+Mx

y

{
QMxxz

Myz

[MxxMzzz + · · · + y(MxxzMyzz + · · ·)]

+QMyyz

Mxz

[MyzMxzz − · · · + y(MyyzMxzz + · · ·)]

+QMzzz

Mx

[y(MyzMxzzz −MxzMyzzz)−MxzMzzz]

+Qz +QMMz + · · · +QMyzz
Myzzz

}
= 0. (3.21)

Note that owing to the cancellation of certain terms the coefficient ofQMzzz
is zero. Since

(3.21) must be satisfied for all solutionsM(x, y, z) of (2.2a) then the coefficients of products
of powers of each fourth-order derivative must be identically zero (in drawing conclusions
from these identities we must take account of (2.2a), at least in principle, as we have
considered only (3.20a–c) so far). From the coefficients ofMxxxx , Myyyy , Mxxxy , Mxxxz,
Mxxyy , Mxxyz, Mxyyy , Mxyyz, Mxzzz, Myzzz, Myyyz andMxyzz we obtain respectively

−MyzQMxxx
= 0 (3.22a)

−MxzQMyyy
= 0 (3.22b)

−MyzQMxxy
+MxzQMxxx

= 0 (3.22c)

−MyzQMxxz
= 0 (3.22d)

−MyzQMxyy
+MxzQMxxy

= 0 (3.22e)

−MyzQMxyz
+MxzQMxxz

+ Mx

y
QMxxy

= 0 (3.22f)

−MyzQMyyy
+MxzQMxyy

= 0 (3.22g)

−MyzQMyyz
+MxzQMxyz

+ Mx

y
QMxyy

= 0 (3.22h)
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−
(

1− 1

y

)
MxQMxzz

+ M
2
xQMxxz

yMyz

= 0 (3.22i)

−MxQMyzz
− M

2
xQMyyz

yMxz

+ Mx

y
QMyzz

= 0 (3.22j)

MxzQMyyz
+ Mx

y
QMyyy

= 0 (3.22k)

−yMxzQMxzz
−MyzQMyzz

+ yMyzQMyzz
+MxzQMxzz

+
(
yMxzQMxxz

Myz

+ yMyzQMyyz

Mxz

+QMxyz

)
Mx

y
= 0. (3.22l)

In generalMx , Mxz andMyz are nonzero, so from (3.22) we conclude that

QMxxx
= QMyyy

= QMxxy
= QMxxz

= QMxyy
= QMxyz

= QMyyz
= QMxzz

= QMyzz
= 0.

(3.23)

Note that we havenot shown thatQMzzz
= 0 as no coefficient of a fourth-order derivative

of M in (3.21) involvesQMzzz
(recall the cancellation of terms mentioned above); indeed it

turns out that in generalQMzzz
6= 0. In the special caseQMzzz

= 0 we reduce to the search
for second-order MCQs considered above. We proceed with the general case.

It turned out that in obtaining (3.23) the condition (2.2a) is not needed; since we are
now sure thatQ is independent of bothMxzz andMyzz we can use (2.2a) to eliminate one
of these third-order terms from (3.21). ChoosingMxzz and using (3.23) then (3.21) becomes

−Myz{Qx +QMMx +QMx
Mxx +QMy

Mxy +QMz
Mxz +QMxx

Mxxz +QMxy
Mxxy

+QMxz
Mxzz +QMyy

Mxyy +QMyz
Mxyz +QMzz

Mxzz

+QMzz

yMyz

[MxMzzz + yMxzMyzz]}
+Mxz{Qy +QMMy +QMx

Mxy +QMy
Myy +QMz

Myz +QMxx
Mxxy

+QMxy
Mxyy +QMxz

Mxyz +QMyy
Myyy +QMyz

Myzz +QMzz
Myzz}

+Mx

y
{Qz +QMMz +QMx

Mxz +QMy
Myz +QMz

Mzz +QMxx
Mxxz

+QMxy
Mxyz +QMxz

Mxzz +QMyy
Myyz +QMyz

Myzz +QMzz
Mzzz}

−1

y
MxzMzzzQMzzz

= 0. (3.24)

(We find that there are no terms involvingQMzz
owing to cancellation of terms.) Since

we have shown thatQ is independent of all but one third-order derivative ofM then the
coefficients of different products of powers of third-order terms in (3.24), except those
involving Mzzz must be identically zero:

−MyzQMxx
= 0 (3.25a)

−MyzQMxy
+MxzQMxx

= 0 (3.25b)

−MyzQMxz
+ Mx

y
QMxx

= 0 (3.25c)

−MyzQMyy
+MxzQMxy

= 0 (3.25d)

−MyzQMyz
+MxzQMxz

+ Mx

y
QMyz

= 0 (3.25e)

Mx

y
QMyz

= 0 (3.25f)
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MxzQMyy
= 0 (3.25g)

MxyQMyz
+ Mx

y
QMyy

= 0 (3.25h)

Mx

y
QMxz

= 0. (3.25i)

In generalMx , Mxz andMyz are nonzero, so from (3.25) we conclude that

QMxx
= QMxy

= QMxz
= QMyy

= QMyz
= 0. (3.26)

Now, sinceQMxx
= QMyy

= 0 then the coefficients of different products of powers of
the corresponding second-order derivatives ofM in (3.25) must be identically zero and so,
from the coefficients ofMxx andMyy , we obtain

−MyzQMx
= 0 (3.27)

MxzQMy
= 0 (3.28)

respectively, from which we conclude

QMx
= QMy

= 0. (3.29)

Using results (3.26) and (3.29) then (3.24) simplifies considerably:

−Myz(Qx +QMMx)+Mxz

{
Qy +QMMy − 1

y
MzzzQMzzz

}
−Mx

y
{Qz +QMMz +QMz

Mzz} = 0. (3.30)

Finally, sinceQMyz
= QMx

= 0 then from the coefficients ofMxMyz andMyz we obtain

QM = Qx = 0 (3.31)

leaving

Mxz

{
Qy − 1

y
MzzzQMzzz

}
+ Mx

y
{Qz +MzzQMz

} = 0. (3.32)

Since in generalMxMxz 6= 0 then

Qy − 1

y
MzzzQMzzz

= 0 (3.33a)

Qz +MzzQMz
= 0. (3.33b)

The general solutions to these equations are respectivelyQ = Qa(yMzzz, ca), Q =
Qb(Mz− zMzz,Mzz, cb), whereca andcb are constants of integration; therefore the general
MCQ of the system (2.2) is

Q = Q(yMzzz,Mz − zMzz,Mzz). (3.34)

It is easy to check that all quantities of this form are indeed materially conserved.

3.2. The question of further MCQs

Using an essentially algorithmic method we have found three MCQs of the system (2.2) or
order 3 or less. Are there other such quantities, of higher order? Using the method, what
happens when there are no MCQs corresponding to the ansatz being studied?

Recall our definition of a MCQ, (3.7). In the context of (2.2) this becomes{
−Myz

y

∂

∂x
+ Mxz

y

∂

∂y
+ Mx

y2

∂

∂z

}
Q = 0 (3.35)
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which may be written (informally) as

dx

−Myz/y
= dy

Mxz/y
= dz

Mx/y
= dQ

0
. (3.36)

The general solution of (3.36) includes exactly three ‘constants’ of integration so that the
general solution of (3.35) is necessarily of the form

Q = S(C1, C2, C3) (3.37)

whereC1, C2 andC3 are functions ofy and derivatives ofM, i.e. Q can at most be a
function of three arguments. Hence there are no MCQs of fourth order or higher and (3.34)
is indeed the most general one (we discuss this idea for a general fluid-dynamical system
in section 5).

It is worth looking briefly at how the method would show that there were no (further)
MCQs corresponding to a particular ansatz, for example, for (2.2), that there are no fourth-
order quantities (one will not always be as fortunate as for the system above!). Rather than
consider ansatzes of the formQ = Q(x,M,Mx,Mxx,Mxxx,Mxxxx), or considering an
alternative system of governing equations, we can see what will happen by looking again at
the computations of section 3.1. When looking for MCQs of up to second order we noted
that the coefficient ofQMzz

was identically zero (see text between equations (3.10) and
(3.11)); also, when looking for MCQs of up to third order we noted that the coefficient of
QMzzz

was identically zero (see text between equations (3.21) and (3.22)). These fortuitous
events lead to (3.15c), and to (3.33a) and (3.33b), the final systems of equations for MCQs,
Q. Were thisnot the case then one would have obtained equations forcing the conclusion
thatQMzz

= QMzzz
= 0 (cf equations (3.11) and (3.22)), and our final equations would be,

respectively,

Mx

y
{Qz +QMMz} = 0

and

Qy = Qz = 0

from which we must conclude that there are no MCQs. In short, the fortuitous cancellation
of certain terms from the computation leading to ‘zero coefficients’ for corresponding
derivatives ofQ, as one proceeds, leads to the existence of MCQs—should such ‘zero
coefficients’ not appear then nor will MCQs.

4. Constructing solutions

In this section we consider the construction of solutions of the governing equations, (2.2),
from the functionally related MCQs, i.e. from (2.4). First we consider an example solution,
in an ocean basin, which is of particular physical significance and illustrates the generality
of solutions obtainable from (2.4). The example shows that solutions constructed by means
of the MCQs satisfyall the boundary conditions which are usually applied to the problem.
Previous analytical solutions are either unable to satisfy a full set of general boundary
conditions (e.g. Salmon and Hollerbach 1991, Hood 1996, Hood and Williams 1996) or
impose a particular physical character on the solution (e.g. Robinson and Stommel 1959,
Welander 1959, Needler 1967, 1971, Hodnett 1978); either way generality is lost. Second
we consider how one might systematically determine the function relating the MCQs,M
in (2.4), by generalizing (2.2) in a physically motivated way.
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Figure 1. A schematic west–east vertical section through the northern Atlantic Ocean showing
the boundary conditions usually applied to the model: at the sea-surface,z = Bρ = 0, the
vertical velocity,wE = w(x, y) and, optionally, the surface density distribution,ρS = ρ(x, y),
are imposed; at depth, a level of no-motion may be assumed; the western boundary is passive,
but at the eastern boundary an integral condition is applied (see text); in addition the density
profile may be prescribed at certain locations,(x, y).

4.1. An example—an ocean basin

We now describe how, using solutions determined from (2.4), one can determine the ocean
dynamics and thermodynamics in the northern Atlantic Ocean (for a full description of the
problem see Hood and Williams (1996) and references contained therein). Figure 1 shows
a schematic west–east vertical section through the region of interest with the boundary
conditions which are to be applied. It is not clear, either from a physical or mathematical
standpoint, what the functionM should be. However, previous work on special cases
suggests we take the following approach.

First, following Killworth (1987), we change to a coordinate system in which we use
density,ρ, as the ‘vertical’ coordinate, rather than depth,z. Then, choosingB(x, y, ρ) =
p + ρz, the Bernoulli function, as the dependent variable in place ofM(x, y, z), the
governing equations, (2.2), become

u = −By
y

v = Bx

y
z = Bρ w = uzx + vzy (4.1a)

(BxByρρ − ByBxρρ)y − BxBρρ = 0 (4.1b)

the potential vorticity is

q = y

Bρρ
(4.2)

and so (2.4) becomes

Bρρ = yB(B, ρ) (4.3)
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(a considerable simplification).
The simplest functionB is linear giving

Bρρ = f1(ρ)B + f0(ρ) (4.4)

where bothf1(ρ) andf0(ρ) are to be determined. In fact this simple case is of particular
physical significance: Killworth (1987) considered the casef0 = 0 with the restricted
boundary conditionsρ = ρS(y) (i.e. the surface density is a function of only latitude)
with w = wE(y) (the surface vertical velocity is also a function of latitude, only) and/or
u(0, y, z) = 0 (eastern velocity at the eastern boundary is zero at all depths and latitudes);
Salmon (1994) consideredf1 = 0 and added time dependence to the problem.

From (4.4) we expect to find two functions of integration,a(x, y) andb(x, y); we also
have to fixf1(ρ) and f0(ρ). The boundary conditions for this problem are a subject of
some debate; we therefore consider two cases. Equations (2.2) are a hyperbolic system
(Huang 1988) so one cannot expect to apply conditions at all boundaries: the northern,
southern and western boundaries are all passive. We apply conditions at the surface,
bottom and an integral condition at the eastern boundary. (For more detailed discussion
of boundary conditions for this problem see Killworth (1987), Samelson and Vallis (1997),
Huang (1988).)

Case (i). We impose the vertical velocity field at the surface (more accurately, below some
surface layer, subject to different dominant dynamics, which we patch onto our solution
domain), i.e. we prescribewE(x, y), where

wE(x, y) = 1

y
(BxByρ − ByBxρ)|Bρ=0. (4.5a)

We also assume that flow below some depth, which we take to beρ = 0, without loss of
generality, is an order of magnitude weaker than in our solution domain; this is described
by

B(x, y,0) = 0 (4.5b)

(Killworth 1987, section 2).

Case (ii). Alternatively, we can prescribe bothw andρ at the surface, i.e.

wE(x, y) = 1

y
(BxByρ − ByBxρ)|Bρ=0 (4.6a)

ρS(x, y) = ρ|Bρ=0. (4.6b)

In fact these conditions are not enough to fixa(x, y) andb(x, y). In each case we have
imposed one algebraic constraint, so thata andb are no longer independent, together with
one first-order PDE with independent variablesx andy. Consequently it remains to fix an
arbitrary function of some known function ofx andy resulting from the integration of the
first-order PDE. This can be done by placing an (integral) constraint on the flow or heat
flux through the eastern boundary. Finally,f1(ρ) andf0(ρ) may be set by prescribing the
variation of density with depth at two points(x, y).
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4.2. Systematically findingM

Above we considered a particular case ofM in (2.4) (i.e.B in (4.3)), motivated by other
authors’ work. The question remains, how given a particular problem, would one findM
systematically? An answer, it turns out, is to make the model which the governing equations
(2.2) representsmore realistic.

Equations (2.2) represent an ideal system, i.e. a system in which diffusion, friction
and other such effects are assumed negligible. This is done for simplicity and is only
approximately true. What happens if we introduce some nonideal effect, parametrized by
κ, 0< κ � 1? The relation (4.3) will now be only approximately true. We suppose

Bρρ = yB(ρ, B, κx, κy) (4.7)

i.e. the nonideal effect is balanced, mathematically, by a slow variation in the functional
relation between the MCQs.

For illustration let us consider Fickian diffusion, so that, (4.1b) becomes

(BxByρρ − ByBxρρ)y − BxBρρ = κy2Bρρρ (4.8)

and let us work with the special case studied by Salmon (1994), i.e.

Bρρ = yF(ρ). (4.9)

Generalizing (4.9) to include slow variation withx andy, and integrating we obtain

B(x, y, ρ) = yF(ρ, κx, κy)+ ρb(x, y)+ a(x, y) F (ρ) =
∫ ρ ∫ ρ1 1

Q(ρ2)
dρ2 dρ1

(4.10)

(wherea andb are functions of integration, to be determined), then substituting into (4.8)
terms of O(1) cancel leaving

(ρbx + ax)FYρρ = y2Fρρρ +O(κ2) Y = κy. (4.11)

This differential constraint does not fully determineF , or equivalentlyF , but perhaps
points the way. This approach, for both Salmon’s special case, (4.9), and the general case
is actively being considered by the author (Hood 1997).

5. Discussion and conclusions

In the preceding sections we have considered how one might use the conservation laws
of the governing PDEs describing a system to construct exact analytical solutions; we
have focused on the equations describing large-scale flow within the ocean (the geostrophic
equations). For these equations we used asystematicmethod to recover three MCQs which
were necessarily functionally related; this relation takes the form of a differential equation
which is significantly simpler than the governing equations, the solution of which can be
used as a quite general solution ansatz for the governing PDEs. We also proved that no
more MCQs exist. Finally we considered an example, an ocean basin, which illustrated
the generality of the solutions obtained and suggested a mechanism reflecting higher-order
dynamics by which one might determine the function relating the quantities.
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Generality of solutions. It is important to emphasize that solutions obtained by means
of relating MCQs are significantly more general than those obtained by other analytical
methods, for these equations. In early work on (2.2) informed guesses where made for
forms of solution sometimes based on similarity variables or partial separation of variables,
e.g. Robinson and Stommel (1959), Welander (1959), Needler (1967, 1971) Hodnett (1978).
These works mark significant analytical progress on a formidable system of equations.
However, in each case there are limitations on boundary conditions which can be satisfied
and the physical character of the solutions, perhaps motivated by the physics, is built into
the solution method. An alternative, systematic (indeed algorithmic) method has been tried:
Salmon and Hollerbach (1991) used Lie’s method (e.g. Bluman and Kumei 1989, Olver
1986, Stephani 1990) to determine a set of point symmetries of (2.2), with Fickian diffusion
added in (2.2c) (cf (4.8)). This work was extended, for more general diffusion, using a more
general method which obtained more symmetries by Hood (1996) and Hood and Williams
(1996). Further, the time-dependent problem was studied (using Lie’s method) by Edwards
(1996). These symmetries were used to construct classes of solutions which were general
enough to carry out simple experiments to investigate particular physical processes, however,
again, only a limited class of boundary conditions can be satisfied. In contrast, integration
of (2.4) (equivalently (4.3)) yields the general solution of the governing equations, (2.2)
(equivalently (4.3)), in the sense that there are two arbitrary functions ofx andy and (at
least) one ofz (or ρ). As illustrated in section 4.1 these solutions can satisfy the full set of
boundary conditions that one would expect to impose.

Wider application. These ideas are certainly not restricted to the geostrophic equations. In
general, given a system of PDEs inn independent variables withn MCQs known, one can
construct a solution ansatz in exactly the same way. For example consider the 2D Euler
equations,

Du

Dt
= g − 1

ρ
∇p. (5.1)

Both vorticity, ω (where ωk = ω = ∇ × u), and the stream function,ψ (where
u = ∂ψ/∂y and v = −∂ψ/∂x, which automatically ensures mass conservation), are
materially conserved, whence

∂2ψ

∂x2
+ ∂

2ψ

∂y2
= G(ψ) (5.2)

for some functionG. Equation (5.2) alone determines the flow, givenG. Certain functions
have been considered (e.g. many workers have assumed a linearq–ψ relationship, but there
is analytical, numerical and experimental evidence that this is not always possible, especially
in the case of a ‘tripolar’ vortex (van Heijstet al 1991, Legraset al 1988)); as in section 4.2
one could add a small amount of some nonideal effect to suggest whatG might be.

It is likely that for any system of equations for which these ideas are fruitfully employed,
the resulting analytical solutions will be significantly more general than those resulting from
point symmetries—stronger boundary conditions will be satisfied. Furthermore, one may be
able to construct useful solutions even with fewer thann MCQs known—indeed, the most
physically relevant case may involve fewer thann (e.g. Salmon 1994).

In section 3.2 we showed that the geostrophic equations, (2.2), have no more than three
MCQs. This principle carries over to any fluid-dynamical system. An MCQ must satisfy{

u
∂

∂x
+ v ∂

∂y
+ w ∂

∂z

}
Q = 0 (5.3)
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(for a steady system), which may be written (informally) as
dx

u
= dy

v
= dz

w
= dQ

0
. (5.4)

In principle, one can always solve the governing equations foru(x, y, z), v(x, y, z) and
w(x, y, z), and then integrate (5.4) forQ as a function of three ‘constants’ of motion. This
is true for anyu(x, y, z), v(x, y, z) andw(x, y, z). It follows that a three-dimensional,
steady system has three MCQs. This principle is readily extended to systems with more
(or fewer) independent variables. However, to be of interest, a quantity must be materially
conserved for a wide class of solutions of the governing equations (preferably all solutions),
i.e. we want to be able to find MCQs without first solving the governing equations—indeed,
we may well intend that knowledge of the MCQs is to help us solve them! If the equations
describing a fluid-dynamical system can be put in potential form, cf (2.2), then we have
a much better chance of findinguseful MCQs. In this case we can construct an equation
such as (3.35). It may be possible to integrate this directly, though this is unlikely. Usually
finding the MCQs by using the method described in section 3.1 will be the most fruitful
approach: given that the number of MCQs is known from the number of independent
variables then one can consider candidates of increasing order, using a computer algebra
system, until all these are found.

Relation of point-symmetry solutions and MCQ solutions; Noether.The question arises,
what is the connection between solutions obtained by means of point symmetries (of the
governing equations) and those constructed from MCQs? Is one a subset of the other?
Noether’s Theorem (e.g. Bluman and Kumei 1989, Stephani 1990) gives us some insight.

Solutions obtainable from material-conservation laws are a consequence of the existence
of point symmetries ofthe action integral of a system; in contrast, the usual point-
symmetry methods determine solutions which reflect symmetries of the governing equations
themselves. Since the solutions constructed from MCQs are general in the sense stated above
then one would usually expect solutions constructed from point symmetries to be special
cases of the former—of course some of the point-symmetry solutions may well be singular.

Noether’s theorem suggests an alternative approach to the construction of conservation
laws to that advocated in this paper: determine the point symmetries of the action integral
and use these to construct the MCQs. This approach is also essentially algorithmic, however,
one is limited to those systems for which a Lagrangian is known. This is a significant
weakness from which the more direct approach of section 3 does not suffer.

Backwards. Finally, one can turn the whole problem around. Given that one can determine
the MCQs of a fluid-dynamical system from the velocity field, an obvious question that
arises is, givenn MCQs of a system inn independent variables, can one determine the
corresponding dynamics? Yes—but not uniquely. Let us return to the three MCQs given
by (2.3). Any velocity field for which these three quantities are materially conserved must
satisfy

uMxzz + vMyzz + wMzzz = 0 (5.5a)

u(Mxz − zMxzz)+ v(Myz − zMyzz)− wzMzzz = 0 (5.5b)

uyMxzzz + v(Mzzz + yMyzzz)+ wyMzzzz = 0 (5.5c)

which is a 3× 3 linear, algebraic system foru, v andw. Following some straightforward
algebra we find a solution exists provided

MxzM
2
zzz + yMzzzz(MyzMxzz −MxzMyzz)+ yMzzz(MxzMyzzz −MyzMxzzz) = 0 (5.6)
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and then the general solution, foru, v andw may be written,

Mxzu+Myzv = 0 (5.7a)

w = −Mxzzu+Myzzv

Mzzz

. (5.7b)

An integrating factor for (5.6) is easily found: multiplying through byM−2
zzz and integrating

we find

MxMzzz + y(MxzMyzz −MyzMxzz) = M0(x, y)Mzzz (5.8)

whereM0(x, y) is a function of integration. The dynamics corresponding to the MCQs (2.3)
is therefore given by (5.7) and (5.8). Equation (5.8 is in fact equivalent to (2.2a) (substitute
M(x, y)+∫ x M0(x̂, y)dx̂ for M(x, y)); this equivalence reflects a point symmetry of (2.2a)
(Salmon and Hollerbach 1991). Nevertheless, a degree of freedom in the velocity field
remains—the dynamics are not uniquely determined by the MCQs.
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